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Abstract— The objective of this project is to implement and 

demonstrate multiprocessing in a real-time environment using 
ThreadX RTOS on PowerPC and MicroBlaze processor cores. 
We compared the performance of ThreadX on both the 
processors using custom applications. One of the major 
challenges involved in the project was to make ThreadX work on 
both the above mentioned processors seamlessly. For the 
implementation of a multi-tasking model, a producer consumer  
application that utilizes a mutex, two semaphores and a timer 
was programmed. A multi-threaded Matrix multiplication 
program was used to determine the execution as well as context 
switching times on both the cores. The results were then 
compared and the performance of the hardware configurations 
was analyzed. Though both Microblaze and PowerPC performed 
well, the PowerPC core on a Virtex-II Pro Platform was better 
with faster execution and context switching times. 

 
Index Terms—Multitasking, ThreadX, Microblaze, PowerPC  

 

I. MOTIVATION AND INTRODUCTION 

A SSEMBLY level programs were used in the past for 
Embedded applications. With the advances in memory, 
processor speed, and development tools, high level 

languages like C are now used to develop embedded 
applications. Real-Time OS takes care of Task scheduling, 
Memory management, File handling etc. ThreadX is one such 
RTOS developed by Express Logic Inc. ThreadX Can be 
customized to run on various processors. Our project 
demonstrates a multiprocessing application on Microblaze 
soft-core and PowerPC. The performance of ThreadX on both 
these cores was measured and a comparative study is 
presented here. 
 
RTOS’ seldom run the same way on different underlying 
processor architectures. Most RTOS’ are built to take 
advantage of specific processor architectures. For example 
ThreadX saves only registers a1-a4 during a Context switch in 
ARM processor. This warrants a thorough performance 
analysis of commonly-used RTOS’ on different platforms. A 
study of development time for different platforms can be 
indicative of time- to-market windows for commercial 
products. 

 
 

II. BACKGROUND 

A. Multitasking 
Multitasking is a technique to allocate processing time among 
various duties or jobs, which the overall software program 
must perform. This usually means that the software is divided 
into tasks, or smaller subsets of the total problem and at run-
time, creating an environment that provides each task with its 
own virtual processor. A virtual processor typically includes a 
register set, a program counter, a stack memory area, and a 
stack pointer. A multitasking run-time environment controls 
overall task execution. When a higher-priority task needs to 
execute, the currently running task's registers are saved in 
memory and the higher-priority tasks registers are recovered 
from memory. The process of swapping the execution of tasks 
is commonly called context switching and context-switching 
time is a commonly quoted specification for operating systems 
targeting the real-time or embedded systems market. 
 
State machines and time slicing are two popular multitasking 
methods. State machines have been used to design complex 
systems with high reliability requirements. State machines 
require that the task is split into states. The state machine stays 
in one state at a time, and switches to another state when the 
specified conditions are met. Actions are performed during the 
transitions. States represent a situation that is stable for some 
time interval. Time slicing means that the kernel interrupts 
each process after some milliseconds and gives control to 
another task. Thus, each task is given CPU processing at 
regular intervals.  

 

B. Microblaze 
The MicroBlaze core is a 32-bit Harvard RISC architecture 
with a rich instruction set optimized for embedded 
applications. The processor is a soft core, which is 
implemented using general logic primitives rather than a hard, 
dedicated block in the FPGA. The MicroBlaze soft processor 
is supported in the Xilinx Spartan and Virtex series of FPGAs. 
 
The MicroBlaze solution is designed to be flexible, giving the 
user control of a number of features such as the cache sizes, 
interfaces, and execution units. The configurability allows the 
user to trade-off features for size, in order to achieve the 
necessary performance for the target application at the lowest 
possible cost point. 
 
Soft Processor: Intellectual Property (IP) core implemented 
using the logic primitives of an FPGA. Key benefits: 
Configurability or trade off between price and performance, 
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faster time to market, easy integration with the FPGA fabric, 
no processor obsolescence. The Microblaze performance 
depends on the configuration of the processor and the target 
FPGA architecture and speed grade. The number of 
Microblaze processors on a single FPGA is only limited by 
the size of the FPGA. Microblaze configurable interfaces and 
peripherals include timers, UARTs, interrupt controllers, 
GPIOs, external flash and memory controllers. 
 

C. PowerPC 
The PowerPC (Performance Optimization With Enhanced 
RISC) Architecture, is a 64-bit specification with a 32-bit 
subset. Almost all PowerPCs with a few exceptions are 32-bit. 
 
PowerPC processors have a wide range of implementations, 
from high-end server CPUs to the embedded CPU market. 
PowerPC processors have a strong embedded presence 
because of good performance, low power consumption, and 
low heat dissipation. PowerPC 405 is a 32-bit RISC hard IP 
core. Virtex II Pro platform FPGAs provide upto two 
PowerPC 405 cores on a single device. IBM PowerPC 405 has 
wide acceptance in performance oriented applications as well 
as comprehensive 3rd party tools support.  It offers excellent 
performance vs power characteristics in a small die area. 
PowerPC core supports a system frequency of atleast 
300MHz, corresponding to more than 420 Dhrystone MIPS.  
The processor frequency can be dynamically changed for 
reduced system power dissipation. 
 

D. ThreadX 
ThreadX is Express Logic's advanced Real-Time Operating 
System (RTOS) designed specifically for deeply embedded 
applications. ThreadX has many advanced features, including 
its picokernel architecture, preemption-threshold, and a rich 
set of system services. ThreadX is implemented as a C library. 
Only the features used by the application are brought into the 
final image. The minimal footprint of ThreadX is as small as 
2.5KB on CISC processors. 
 
Why ThreadX? It supports a wide spectrum of processors. 
The complete ANSI C code is available and there are no 
royalties! ThreadX has a very small footprint (as low as 4KB), 
Unlimited Threads, Queues, Event Flags, Timers, 
Semaphores, Mutexes, Block Pools, and Byte Pools. 
Execution is fast with almost 1.7µs context switch @ 40MHZ. 

 

III. OUR IMPLEMENTATION 
A good working knowledge of the following resources/tools is 
required. The following tools would be used:  
 
• Xilinx Platform Studio v8.1i 
• XUP Virtex-II Pro Board (PowerPC core) 
• Digilent Inc., Spartan-3 Rev E Board (Microblaze) 
• ThreadX RTOS from Express Logic 
• Windows Hyperterminal 

 

A. Xilinx Platform Studio v8.1i 
The 8.1i version of the Xilinx® Platform Studio tool suite is 
used for embedded processing design. This latest release 
incorporates a new graphical user interface that improves 
platform-based design by making common, tasks easy. 
Platform Studio 8.1i supports PowerPC and MicroBlaze 
processor designs for the Xilinx Virtex™-4, Virtex-II Pro, 
Spartan™-3 and Spartan-3E Platform FPGAs. 
 
The Platform Studio suite is conveniently bundled with a 
processing IP library, software drivers, documentation, 
reference designs and the MicroBlaze soft processor IP core in 
the new 8.1i release of the Xilinx Embedded Development Kit 
(EDK). The Embedded Development Kit (EDK) bundle is an 
integrated software solution for designing embedded 
processing systems. This pre-configured kit includes the 
Platform Studio tool suite as well as all the documentation and 
IP that is required for designing Xilinx Platform FPGAs with 
embedded PowerPC™ hard processor cores and/or 
MicroBlaze™ soft processor cores. The Embedded 
Development Kit includes the following tools and IP: 
 
Xilinx Platform Studio (XPS) 
• Graphical and command line tools for developing and 
debugging the hardware and software platforms for an 
embedded application. 
• Hardware platform that includes graphical and textual 
definition tools and generation of simulation and 
implementation netlists for use with the ISE logic design 
tools. 
• Software platform definition that includes graphical and 
textual tools for matching it to the hardware platform, editing 
source code, running the compiler tool chains and library 
generation. 
 
Software Development Tools 
• GNU C/C++ compiler for MicroBlaze™ and PowerPC™ 
• GNU Debugger for MicroBlaze and PowerPC 
• Other GNU utilities 
• XMD – Xilinx Microprocessor Debug engine for 
MicroBlaze and PowerPC. It provides host-based target 
control using command line tools that enable complex 
regression testing. 
• Data2MEM – a stand alone application for loading and 
updating on-chip memory content directly within the FPGA 
bitstream. 
• Base System Builder – Wizard to streamline configuring 
hardware elements, processor options, bus system, IP options, 
and automatically generate memory map and design files 
• Platform Studio SDK (Software Development Kit) – SW 
focused development and debug environment.  
 
Board Support Packages (BSPs) 
• Stand Alone BSP – For non-RTOS systems (MicroBlaze and 
PowerPC) 
• Wind River VxWorks – For PowerPC Platform FPGAs 
• MontaVista Linux – For PowerPC Platform FPGAs 
• Support for Xilinx MicroKernel (XMK) Systems 
 
Processor IP 
• PowerPC and MicroBlaze infrastructure and peripheral IP 
cores and Microblaze soft processor core.  
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Base System Builder 
The Base System Builder (BSB) automates several basic 
hardware and software platform configuration tasks common 
to most processor designs. If the target is one of the supported 
embedded processor development boards available from 
Xilinx, BSB picks the peripherals available on that board, and 
automatically matches the FPGA pinout to the board, and 
create a completed platform and test application that is ready 
to download and run on the board. There is also the option of 
designing a custom board, by using BSB to select and 
interconnect one of the available processor cores 
(MicroBlaze™ or PowerPC™, depending on the selected 
target FPGA device) with a variety of compatible, commonly 
used peripheral cores from the library. This gives us a 
hardware platform to use as a starting point from which we 
can add more processors and peripherals if needed, including 
custom peripherals, using the tools provided in XPS. 
 
In all cases, BSB customizes following attributes of the 
system: 
• Processor type (MicroBlaze or PowerPC, depending on 

the selected target FPGA device) 
• Processor and bus clock frequency (BSB automatically 

infers and configures a Digital Clock Manager (DCM) 
primitive when needed) 

• Standard processor buses (all peripherals are 
automatically connected via appropriate buses) 

• Debug interface  
• Cache configuration  
• Memory size and type (both on-chip BRAM and 

controllers for off-chip memory devices) 
• Common peripherals (such as general purpose I/O, 

UART, and timer) 
• Interrupt sources (from among the applicable selected 

peripherals) 
When targeting one of the supported embedded processor 
development boards, BSB narrows the choices of peripherals 
that control off-chip devices to those features provided on the 
specific board. Any deselected peripherals are omitted from 
the processor system design to minimize FPGA utilization.  
 
Upon exit of BSB, a Hardware Specification (MHS) file is 
created and loaded into the XPS project.  We can then further 
enhance the design in XPS or continue to implement the 
design using the Xilinx implementation tools. 
 
Optionally, BSB can also create one or more software 
projects. Each project contains a sample application and linker 
script that can be compiled and run on the hardware on the 
target development board. XPS supports multiple software 
projects for every hardware system, each of which contains its 
own set of source files and linker script. 
 

B. Digilent Inc. Spartan III (Microblaze)  
Spartan-3 development board is a low-cost solution for 
evaluating the Xilinx Spartan-3 XC3S200 FPGA. The 
Spartan-3 Starter Board provides a powerful, self-contained 
development platform for designs targeting the new Spartan-3 
FPGA from Xilinx. It features a 200K gate Spartan-3, on-
board I/O devices, and 1MB fast asyncronous SRAM, making 

it the perfect platform to experiment with any new design, 
from a simple logic circuit to an embedded processor core. 
The board also contains a Platform Flash JTAG-
programmable ROM, so designs can easily be made non-
volatile. The Spartan-3 Starter Board is fully compatible with 
all versions of the Xilinx ISE tools. The major features of the 
board are: 
• Xilinx Spartan-3 FPGA w/ twelve 18-bit multipliers, 

216Kbits of block RAM, and up to 500MHz internal 
clock speeds  

• On-board 2Mbit Platform Flash (XCF02S)  
• 8 slide switches, 4 pushbuttons, 9 LEDs, and 4-digit 

seven-segment display  
• Serial port, VGA port, and PS/2 mouse/keyboard port  
• Three high-current voltage regulators (3.3V, 2.5V, and 

1.2V)  
• Works with JTAG3 programming cable, and P4 & 

MultiPRO cables from Xilinx  
• 1Mbyte on-board 10ns SRAM (256Kb x 32) 

 

 
Fig. 1: Xilinx Spartan-3 platform architecture diagram 

 

C. Digilent Inc.XUP Virtex II PRO Board (PowerPC) 
 
The XUP Virtex-II Pro Development System provides an 
advanced hardware platform that consists of a high 
performance Virtex-II Pro Platform FPGA surrounded by a 
comprehensive collection of peripheral components that can 
be used to create a complex system to demonstrate the 
capability of the Virtex-II Pro Platform FPGA. Some features 
of the board: 
 
• Virtex-2 Pro XC2VP30 FPGA with 30,816 Logic Cells, 

136 18-bit multipliers, 2,448Kb of block RAM, and two 
PowerPC Processors  

• DDR SDRAM DIMM that can accept up to 2Gbytes of 
RAM  

• 10/100 Ethernet port  
• USB2 port  
• Compact Flash card slot  
• XSGA Video port  
• Audio Codec  
• SATA, and PS/2, RS-232 ports  
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Fig. 2: Virtex II Pro board architecture diagram 

D. ExpressLogic ThreadX RTOS 
ThreadX is a high performance real time kernel designed 
specifically for embedded applications. It is highly scalable 
from small microcontroller applications to powerful RISC and 
DSP processors. ThreadX services are implemented as a C 
library, only those services actually used by the application 
are brought into the run-time image. Hence, the actual size of 
ThreadX is completely determined by the application. For 
most applications, the instruction image of ThreadX ranges 
between 2 KBytes and 15 KBytes in size. 
 
Instead of layering kernel functions on top of each other like 
traditional microkernel architectures, ThreadX services plug 
directly into its core. This results in the fastest possible 
context switching and service call performance. This non-
layering design is called picokernel architecture. 
 
ThreadX is written primarily in ANSI C. A small amount of 
assembly language is needed to tailor the kernel to the 
underlying target processor. This design makes it possible to  
port ThreadX to a new processor family in a very short time. 
 
Most distributions of ThreadX include the complete C source 
code as well as the processor-specific assembly language. This 
eliminates the “black-box” problems that occur with many 
commercial kernels. The source code also allows for 
application specific modifications. Although not 
recommended, it is certainly beneficial to have the ability to 
modify the kernel if it is absolutely required. 
 
Because of its versatility, high-performance picokernel 
architecture, and great portability, ThreadX has the potential 
to become an industry standard for embedded applications. 
 
Using ThreadX is easy. Basically, the application code must 
include tx_api.h during compilation and link with the 
ThreadX run-time library tx.lib. There are four steps required 
to build a ThreadX application: 

• Include the tx_api.h file in all application files that use 
ThreadX services or data structures. 

Create the standard C main function. This function must 
eventually call tx_kernel_enter to start Thre
Application-specific initialization that does not involve 
ThreadX may be added prior to entering the kernel. 
Create the tx_application_define function. This is where 
the initial system resources are created. E
system resources include threads, queues, memory pools, 
event flag groups, mutexes, and semaphores. 
Compile application source and link wi

downloaded to the target and executed. 

Fig. 3: Flow diagram for ThreadX initialization 
 

ThreadX provides several API services such as Byte and 
Block Memory servi
Q
Timer Services. 
 
Context Switch: When one thread is executing and an 
interrupt occurs, triggering the execution of a higher priority 
thread, the previously executing thread is interrupted, its 
context saved, and the processor is directed to start or resume 
execution of the instructions of the new thread. This context 
switch must be performed quickly, because real-time systems 
can require many context switches in a short period of time. 
On the front end of interrupt service routines, only the 
compiler’s scratch registers are saved initially. If it turns out 
that thread preemption is required, then the remaining 
registers in the set are also saved. ThreadX optimizes context 
switching on the ARM processor. Only those registers 
preserved across function calls are saved (registers v1-v4, fp, 
and lr). As a result, ThreadX performs cont
A
microsecond on a 100M
 
Application Timers:  
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Application timers are maintained by ThreadX to provide 
“count-down” services to provide a variety of time-related 
duties. Timers can be set up to operate once (an one-shot 
timer), or for recurring operation (a periodic timer). When a 
timer expires, it generates an interrupt and a timer function 
(similar to an Interrupt Service Routine or “ISR”) is executed. 
The timer function can affect the processing or even the 
sc s, depending on which threads 
h  this timer expires. 

The RS232 Serial port was used for communication between 

 
Fig. 4: Bl ject plan 

ere we outline the procedure for creating and running the 

ort of our custom test application(s) and is not 

puter and 

r Board. 

ost 
com

 settings: 
rt corresponding to connected serial 

ost computer 
00 

 

oose the Base 

 

B Configure I/O Interfaces: Uncheck LEDs, 7 

eripherals: Add an OPB Timer 

mer mode with interrupts. 
osen with default values. 

 
Preparing the Software Application: 

pendix A. 

 the appendix, 

4. on. 

ons to be appended. 
6. Type -M <location/foldername>/tx.a in the Linker     

The j
Base Sys

1. ure I/Os: Uncheck DDRSDRAM, 

2. 
 Memory size. Also add OPB 

 Timer and choose one 
timer with interrupts. 

lication in the same way as above.  
Source Code for the Producer-Consumer Application is 
provided in Appen

wo multitasking applications were designed using ThreadX 
RTOS for execution on Microblaze and PowerPC cores. 
 

1. Producer-Consumer Application 

heduling of application thread
ave been set up to execute when

E. Windows Hyperterminal 

the Development boards and the host PC.  

ock diagram of Pro

IV. PROCEDURE 
 
H
ThreadX multitasking application on the development boards.  
 
The major steps involved for Spartan-3 board are: (this list is 
in supp
exhaustive. For a complete guide please refer to the Xilinx 
guides) 
1. Connect the Parallel Cable between your host computer and 
the Spartan-3 Starter Board.  
2. Connect the serial cable between your host com
the Spartan-3 Starter Board. 
3. Apply power to the Spartan-3 Starte

4. Start a hyperterminal (or similar) session on your h
puter with the following settings: 

• Start a hyperterminal (or similar) session on your host 
computer with the following

• Select the COM po
port on your h

• Baud Rate = 96
• Data = 8 bits
• Parity = none 
• Stop = 1 bit 
• Flow control = none 
5. Invoke Xilinx Platform Studio (XPS) and ch
System Builder (BSB) Wizard. 
Creating the Hardware Platform with the BSB: 
6. In BSB the following configuration is chosen for the Xilinx
Spartan-3 board processor apart from the default settings: 
Under Local Memory, for Data and Instruction, select 16 KB. 
7. In BS
segment LEDs and Check RS232 and SRAM with default 
settings. 
8. In BSB Add Internal P
Peripheral and choose a Count Bit Width of 32 and a single 
ti
9. All the other options in BSB are ch

1. Source code for the Matrix Multiplication program is 
provided in Ap

2. Make sure the tx.a, tx_api.h, and tx_port.h files are in 
project folder. 

3. After adding the test project given in
set the compiler options as follows: 
Select the default linker script opti

5. Give the “> mapfile.map -save-temps” option for 
compiler opti

–WI option. 
 

 ma or steps for XUP Virtex-II Pro board: 
tem Builder Settings: 
In BSB Config
EEPROM, LEDs and all remaining peripherals 
except RS 232. 
In BSB Add Internal Peripherals: For PLB BRAM IF 
CNTLR, select 64KB
BRAM IF CNTRL and OPB

All other options are default. 
 
Prepare the Software App

dix B. 

V. TEST APPLICATIONS 
T
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One Producer and Two Consumers were modeled 
with 3 threads. Two ThreadX Semaphores and one 
Mutex were used. 

2. Matrix Multiplication 
Two Threads were created and each of them was 
performing 100 runs of 6x6 matrix multiplication. 
 

Both the programs were run successfully on each of the cores 
and development boards. The execution time for the matrix 
multiplication and the context switching time for the threads 
was noted. 

VI. EXPERIMENTAL RESULTS 
 
Performance Analysis Methods 
 
Types of Performance analysis methods 

• Intrusive 
• Non-intrusive 

 
Non-intrusive is ‘ideal’ but requires use of special H/w like 
logic analyzers. 
 
Intrusive is easy to implement with a small tradeoff. Usually a 
small piece of code is placed in the application which 
measures the performance metrics such as execution speed, 
time etc. But this code itself will have some overhead 
associated with it. 
 

TABLE 1: A COMPARISON OF MICROBLAZE AND POWERPC CORES 

 
We employed an intrusive method of Performance analysis to 
determine the performance of the ThreadX RTOS on the 
cores. The context switch times were obtained by finding the 
difference in timer counts (ticks) at the end of a thread and the 
beginning of the next thread. 
 
For Matrix Multiplication program: 

  Context Switch time 
 PowerPC:    9 µs @ 100 MHz 
 Microblaze: 16 µs @ 50 MHz 
 

  Execution time for 100 runs 
 PowerPC:    7.2 ms @ 100 MHz 
 Microblaze: 16.07 ms @ 50 MHz 
 

The context switch times obtained above appear higher than 
the expected values or the times given in the data sheets. This 
might be because of the intrusive method used. The 
tx_time_get() function of ThreadX which returns the timer 
ticks elapsed, itself has some amount of overhead associated. 
 

VII. CONCLUSIONS 
 
• ThreadX allows the designer to handle multiple threads 

and inter-thread communication at a higher level. 
• ThreadX resources used in our project are timers, threads, 

mutex and semaphores. 
• Microblaze soft processor gives us the independence to 

choose the configuration and peripheral we like. 
• PowerPC gives better performance when compared with 

Microblaze in terms of lower switching times and faster 
execution. 

• Xilinx’s XPS 8.1i is an easy to use tool to integrate 
hardware description with software applications. 
 

VIII. FUTURE WORK 
 
Multiple Microblaze softcores can be implemented on a single 
FPGA and Microblaze Debug Module allows debugging of 8 
microblaze processors at a time. The XUP Virtex-II Pro 
Platform has two PowerPC cores embedded in the FPGA. The 
combination of multiple processor cores integrated with co-
processing capability enables a wide range of performance 
optimizing options for parallel processing applications. 
Investigation of the performance of the RTOS with multiple 
processors could be carried out. Comparison of ThreadX with 
other commercially available RTOS’ such as: VXWorks, 
Nucleus, uC/OS-II, uCLinux. Comparison of IDEs (Compilers 
and Debuggers) such as Nucleus Debugger (for both MB and 
PPC), E9524A Inverse Assembler (for MB) etc. 

PowerPC 
Clock Frequency Dhrystone MIPS DMIPS/MHZ

100 MHz 135 1.35
200 MHz 271 1.35
300 MHz 407 1.35
400 MHz 542 1.35

Microblaze
Clock Frequency Dhrystone MIPS DMIPS/MHZ

100 MHz 92 0.92
150 MHz 138 0.92
180 MHz 166 0.92
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IX. APPENDIX A 
Source Code for Matrix Multiplication program using 
ThreadX on Microblaze: 
 
// Located in: microblaze_0/include/xparameters.h 
#include "xparameters.h" 
#include "stdio.h" 
#include "xutil.h" 
 
#include "xgpio_l.h" /* general-purpose I/O peripheral control functions */ 
#include "xtmrctr_l.h" /* timer/counter peripheral control functions */ 
#include "xuartlite_l.h" /* uartlite peripheral control functions */ 
#include "xintc_l.h" /* interrupt controller peripheral control functions */ 
 
/* End of MicroBlaze Specific Includes.  */ 
 
#include    "tx_api.h" 
 
#define     TX_DISABLE_ERROR_CHECKING 
#define     DEMO_STACK_SIZE     1024 
#define     MATRIX_SIZE         6 
#define     NO_RUNS      100 
 
TX_THREAD               thread_main; 
TX_THREAD               thread_main1; 
 
void    thread_main_entry(ULONG thread_input); 
void    thread_main1_entry(ULONG thread_input); 
void    convert_to_ascill(ULONG value, CHAR *buffer_ptr); 
 
/* Global variables */ 
unsigned int timer_count = 500;//16777216; /* initial timer period in OPB 
cycles ~= 0.3 sec */ 
ULONG time1, time2; 
char buffer[10]; 
 
/* Timer interrupt service routine */ 
/* Note: This ISR was registered statically in the Software Platform Settings 
dialog */ 
void timer_int_handler(void * baseaddr_p) { 
   unsigned int csr; 
   /* Read timer 0 CSR to see if it requested the interrupt */ 
   csr = 
XTmrCtr_mGetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0); 
   if (csr & XTC_CSR_INT_OCCURED_MASK) { 
      
  _tx_timer_interrupt(); 
   } 
   /* Clear the timer interrupt */ 
   XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0, 
csr); 
} 
 
/* Interrupt test routine */ 
void InterruptTest(void)  
{ 
   /* Start the interrupt controller */ 
   XIntc_mMasterEnable(XPAR_OPB_INTC_0_BASEADDR); 
 
   /* Set the number of cycles the timer counts before interrupting */ 
   XTmrCtr_mSetLoadReg(XPAR_OPB_TIMER_1_BASEADDR, 0, 
timer_count); 
 
   /* Reset the timers, and clear interrupts */ 
   XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0, 
      XTC_CSR_INT_OCCURED_MASK | XTC_CSR_LOAD_MASK ); 
 
   /* Enable timer and UART interrupt requests in the interrupt controller */ 
   XIntc_mEnableIntr(XPAR_OPB_INTC_0_BASEADDR, 

      XPAR_OPB_TIMER_1_INTERRUPT_MASK /*| 
XPAR_RS232_INTERRUPT_MASK*/); 
 
   /* Start the timers */ 
   XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0, 
      XTC_CSR_ENABLE_TMR_MASK | XTC_CSR_ENABLE_INT_MASK 
| 
      XTC_CSR_AUTO_RELOAD_MASK | 
XTC_CSR_DOWN_COUNT_MASK); 
} 
 
/* End user-supplied interrupt test routine */ 
 
int main (void)  
{ 
   //print("-- Entering main() --\r\n"); 
 
   /* Enter the ThreadX kernel.  */ 
 
   tx_kernel_enter(); 
   
   //print("-- Exiting main() --\r\n"); 
   return 0; 
} 
 
void    tx_application_define(void *first_unused_memory) 
{ 
    CHAR    *pointer; 
 
    /* Put system definition stuff in here, e.g. thread creates and other assorted 
       create information.  */ 
 
    /* Setup pointer.  */ 
    pointer =  (CHAR *) first_unused_memory; 
 
    /* Create the main thread.  */ 
    tx_thread_create(&thread_main, "thread main", thread_main_entry, 0,   
            pointer, DEMO_STACK_SIZE,  
            2, 2, 0, TX_AUTO_START); 
    pointer =  pointer + DEMO_STACK_SIZE; 
   
   tx_thread_create(&thread_main1, "thread main1", thread_main1_entry, 0,   
            pointer, DEMO_STACK_SIZE,  
            2, 2, 0, TX_AUTO_START); 
    pointer =  pointer + DEMO_STACK_SIZE; 
   
  /* Initialize MicroBlaze Timer.  */ 
  InterruptTest(); 
} 
 
/* Define the test threads. */ 
void thread_main_entry(ULONG thread_input) 
{ 
   int a[MATRIX_SIZE][MATRIX_SIZE], 
b[MATRIX_SIZE][MATRIX_SIZE], c[MATRIX_SIZE][MATRIX_SIZE]; 
   int i, j, k, m; 
 ULONG sttime, endtime; 
 
   sttime = tx_time_get(); 
  
 for (i=0; i < MATRIX_SIZE; i++) 
 { 
   for (j=0; j < MATRIX_SIZE; j++) 
   { 
      a[i][j] = i; 
    b[i][j] = i+j; 
    c[i][j] = 0; 
   } 
 } 
 
   for (m=0; m < NO_RUNS; m++) 
 { 
   for (i=0; i < MATRIX_SIZE; i++) 
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   { 
     for (j=0; j < MATRIX_SIZE; j++) 
     { 
     for (k=0; k < MATRIX_SIZE; k++) 
     { 
       c[i][j] += a[i][k]*b[k][j]; 
     } 
     } 
   } 
 } 
  
 //tx_thread_sleep(3); 
 endtime = tx_time_get(); 
 endtime = endtime - sttime; 
 convert_to_ascill(endtime,buffer); 
 //print("Total ticks to run matmul : "); 
 print(buffer); 
 //time1 = tx_time_get(); 
} 
 
void thread_main1_entry(ULONG thread_input) 
{ 
   //time2 = tx_time_get(); 
 //time2 = time2-time1; 
 //convert_to_ascill((time2-time1),buffer); 
 //print(buffer); 
  
 int a[MATRIX_SIZE][MATRIX_SIZE], 
b[MATRIX_SIZE][MATRIX_SIZE], c[MATRIX_SIZE][MATRIX_SIZE]; 
   int i, j, k, m; 
 char buffer[10]; 
 ULONG sttime, endtime; 
 
   sttime = tx_time_get(); 
  
 for (i=0; i < MATRIX_SIZE; i++) 
 { 
   for (j=0; j < MATRIX_SIZE; j++) 
   { 
      a[i][j] = i; 
    b[i][j] = i+j; 
    c[i][j] = 0; 
   } 
 } 
 
   for (m=0; m < NO_RUNS; m++) 
 { 
   for (i=0; i < MATRIX_SIZE; i++) 
   { 
     for (j=0; j < MATRIX_SIZE; j++) 
     { 
     for (k=0; k < MATRIX_SIZE; k++) 
     { 
       c[i][j] += a[i][k]*b[k][j]; 
     } 
     } 
   } 
 } 
  
 //tx_thread_sleep(3); 
 endtime = tx_time_get(); 
 endtime = endtime - sttime; 
 convert_to_ascill(endtime,buffer); 
 //print("Total ticks to run matmul : "); 
 print(buffer); 
 
} 
 
 
void    convert_to_ascill(ULONG value, CHAR *buffer_ptr) 
{ 
    ULONG   temp; 
    UINT    i = 1; 

 
    /* Fill with spaces.  */ 
    for (i = 0; i < 16; i++) 
        buffer_ptr[i] = ' '; 
    buffer_ptr[16] = 0; /* NULL */ 
 
    /* Calculate the number of places.  */ 
    i = 1; 
    temp = value; 
    while (temp) 
    { 
 
        temp = temp/10; 
        if (temp) 
            i++; 
    } 
 
    /* Load string with number.  */ 
    i--; 
    temp = value; 
    do  
    { 
        buffer_ptr[i] =  (CHAR) ((temp % 10) + 0x30); 
        temp = temp / 10; 
        if (i) 
            i--; 
    } while (temp); 
} 



 10

X. APPENDIX B 
Source Code for the Producer Consumer ThreadX Application 
on PowerPC: 
 
Producer-Consumer  
 
// Located in: ppc405_0/include/xparameters.h 
#include "xparameters.h" 
#include "stdio.h" 
#include "xutil.h" 
 
/* PPC Specific Includes.  */ 
 
#include    "xgpio_l.h" 
#include    "xparameters.h" 
#include   "tx_api.h" 
 
#define TX_DISABLE_ERROR_CHECKING 
#define     DEMO_STACK_SIZE         1024 
 
/* Define the ThreadX object control blocks...  */ 
 
TX_THREAD               thread_producer; 
TX_THREAD               thread_consumer1; 
TX_THREAD               thread_consumer2; 
TX_SEMAPHORE            sem_flag1; 
TX_SEMAPHORE            sem_flag2; 
TX_MUTEX                mutex; 
 
void    thread_producer_entry(ULONG thread_input); 
void    thread_consumer1_entry(ULONG thread_input); 
void    thread_consumer2_entry(ULONG thread_input); 
void    convert_to_ascill(ULONG value, CHAR *buffer_ptr); 
 
int buffer, num; 
 
/* Begin user-supplied interrupt test routine for PPC_ML310_Tutorial_8_1 */ 
 
/* This example demonstrates how to use an interrupt controller 
 * that responds to interrupts from two peripherals (UART and OPB_timer) 
 * in a PowerPC based system. 
 * This interrupt test routine has been added to the test application 
(TestApp_Memory) 
 * generated by the Base System Builder. 
 */ 
 
#include "xgpio_l.h" /* general-purpose I/O peripheral control functions */ 
#include "xtmrctr_l.h" /* timer/counter peripheral control functions */ 
#include "xuartlite_l.h" /* uartlite peripheral control functions */ 
#include "xintc_l.h" /* interrupt controller peripheral control functions */ 
#include "xexception_l.h" /* PPC exception handler control functions */ 
 
/* Global variables */ 
unsigned int timer_count = 33554432; /* initial timer period in OPB cycles ~= 
0.3 sec */ 
volatile unsigned int exit_command = 0; /* flag from UART ISR to exit 
InterruptTest routine */ 
 
/* Timer interrupt service routine */ 
/* Note: This ISR was registered statically in the Software Platform Settings 
dialog */ 
void timer_int_handler(void * baseaddr_p) { 
   unsigned int csr; 
   /* Read timer 0 CSR to see if it requested the interrupt */ 
   csr = 
XTmrCtr_mGetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0); 
   if (csr & XTC_CSR_INT_OCCURED_MASK) { 
       
XTmrCtr_mEnableIntr(XPAR_OPB_TIMER_1_BASEADDR, 0);    
   _tx_timer_interrupt(); 

   /* Clear the timer interrupt */ 
    
   } 
 } 
 
/* Interrupt test routine */ 
void InterruptTest(void) { 
   print("-- Entering InterruptTest() --\r\n"); 
    
   XIntc_mMasterEnable(XPAR_OPB_INTC_0_BASEADDR); 
      /* Set the number of cycles the timer counts before interrupting */ 
   XTmrCtr_mSetLoadReg(XPAR_OPB_TIMER_1_BASEADDR, 0, 
timer_count); 
   /* Reset the timers, and clear interrupts */ 
   XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0, 
      XTC_CSR_INT_OCCURED_MASK | XTC_CSR_LOAD_MASK ); 
   /* Enable timer and uart interrupt requests in the interrupt controller */ 
   XIntc_mEnableIntr(XPAR_OPB_INTC_0_BASEADDR, 
      XPAR_OPB_TIMER_1_INTERRUPT_MASK /*| 
XPAR_RS232_UART_1_INTERRUPT_MASK*/); 
   /* Start the timers */ 
   XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0, 
      XTC_CSR_ENABLE_TMR_MASK | XTC_CSR_ENABLE_INT_MASK 
| 
      XTC_CSR_AUTO_RELOAD_MASK | 
XTC_CSR_EXT_GENERATE_MASK/*XTC_CSR_DOWN_COUNT_MAS
K*/); 
   /* Enable PPC non-critical interrupts */ 
   XExc_mEnableExceptions(XEXC_NON_CRITICAL); 
    
 
   /* Disable PPC non-critical interrupts */ 
   XExc_mDisableExceptions(XEXC_NON_CRITICAL); 
   print("-- Exiting InterruptTest() --\r\n"); 
} 
 
/* End user-supplied interrupt test routine */ 
 
//==================================================== 
 
int main (void) { 
 
   print("-- Entering main() --\r\n"); 
   /*  
    * MemoryTest routine will not be run for the memory at  
    * 0xffff0000 (plb_bram_if_cntlr_1) 
    * because it is being used to hold a part of this application program 
    */ 
 
   /* Testing BRAM Memory (opb_bram_if_cntlr_1)*/ 
   { 
      XStatus status; 
 
      print("Starting MemoryTest for opb_bram_if_cntlr_1:\r\n"); 
      print("  Running 32-bit test..."); 
      status = 
XUtil_MemoryTest32((Xuint32*)XPAR_OPB_BRAM_IF_CNTLR_1_BASE
ADDR, 512, 0xAAAA5555, XUT_ALLMEMTESTS); 
      if (status == XST_SUCCESS) { 
         print("PASSED!\r\n"); 
      } 
      else { 
         print("FAILED!\r\n"); 
      } 
      print("  Running 16-bit test..."); 
      status = 
XUtil_MemoryTest16((Xuint16*)XPAR_OPB_BRAM_IF_CNTLR_1_BASE
ADDR, 1024, 0xAA55, XUT_ALLMEMTESTS); 
      if (status == XST_SUCCESS) { 
         print("PASSED!\r\n"); 
      } 
      else { 
         print("FAILED!\r\n"); 
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      } 
      print("  Running 8-bit test..."); 
      status = 
XUtil_MemoryTest8((Xuint8*)XPAR_OPB_BRAM_IF_CNTLR_1_BASEA
DDR, 2048, 0xA5, XUT_ALLMEMTESTS); 
      if (status == XST_SUCCESS) { 
         print("PASSED!\r\n"); 
      } 
      else { 
         print("FAILED!\r\n"); 
      } 
   } 
   InterruptTest(); 
   /* Enter the ThreadX kernel.  */ 
    tx_kernel_enter(); 
   /* Run user-supplied interrupt test routine */ 
    
 
   print("-- Exiting main() --\r\n"); 
   return 0; 
} 
 
void    tx_application_define(void *first_unused_memory) 
{ 
    CHAR    *pointer; 
 
    /* Put system definition stuff in here, e.g. thread creates and other assorted 
       create information.  */ 
 
    /* Setup pointer.  */ 
    pointer =  (CHAR *) first_unused_memory; 
 
    /* Create the main thread.  */ 
    tx_thread_create(&thread_producer, "thread producer", 
thread_producer_entry, 0,   
            pointer, DEMO_STACK_SIZE,  
            2, 2, 1, TX_AUTO_START); 
    pointer =  pointer + DEMO_STACK_SIZE; 
   
    tx_thread_create(&thread_consumer1, "thread consumer1", 
thread_consumer1_entry, 1,   
            pointer, DEMO_STACK_SIZE,  
            2, 2, 5, TX_AUTO_START); 
    pointer =  pointer + DEMO_STACK_SIZE; 
 
    tx_thread_create(&thread_consumer2, "thread consumer2", 
thread_consumer2_entry, 2,   
            pointer, DEMO_STACK_SIZE,  
            2, 2, 5, TX_AUTO_START); 
    pointer =  pointer + DEMO_STACK_SIZE; 
 
    /* Create a semaphore */ 
    tx_semaphore_create(&sem_flag1, "semaphore flag1", 1); 
   
    /* Create a semaphore */ 
    tx_semaphore_create(&sem_flag2, "semaphore flag2", 1); 
 
    /* Create the mutex used to access the critical region.  */ 
    tx_mutex_create(&mutex, "mutex 0", TX_NO_INHERIT); 
 
  /* Initialize MicroBlaze Timer.  */ 
  InterruptTest(); 
}  
  
/* Define the test threads.  */ 
void thread_producer_entry(ULONG thread_input) 
{ 
  char tempstr[10]; 
  int num=0; 
  UINT status; 
  ULONG ptime; 
   
  while(1)         // loop forever 

  {                     
   num++; 
    
         status = tx_semaphore_get(&sem_flag2, TX_WAIT_FOREVER); 
    
   /* Get the mutex with suspension.  */ 
         status =  tx_mutex_get(&mutex, TX_WAIT_FOREVER);    // enter 
critical section 
   convert_to_ascill(num, tempstr); 
   print(tempstr); 
   print(" In Producer thread...\r\n"); 
     buffer=num;   // create a new number to put in the buffer 
   
     /* Release the semaphore flag */ 
         status =  tx_semaphore_put(&sem_flag1); 
   print("** Producer releasing semaphore\r\n"); 
 
   /* Release the mutex.  */ 
         status =  tx_mutex_put(&mutex);  // leave critical section 
   //ptime = tx_time_get(); 
   //convert_to_ascill(ptime, tempstr); 
   //print(tempstr); 
    
      tx_thread_sleep(10); 
  } 
} 
 
void thread_consumer1_entry(ULONG thread_input) 
{ 
  UINT    status; 
  char tempstr[5]; 
  int i=0; 
   
  while(1)         // loop forever 
  {                     
         status =  tx_semaphore_get(&sem_flag1, TX_WAIT_FOREVER); 
 
         /* Get the mutex with suspension.  */ 
         status =  tx_mutex_get(&mutex, TX_WAIT_FOREVER);    // enter 
critical section 
   convert_to_ascill(buffer,tempstr); 
    
   print(tempstr); 
    
   if (buffer == num+1) 
   { 
     print("  In Consumer 1...\r\n"); 
     num = buffer; 
   } 
       
   /* Release the mutex.  */ 
         status =  tx_mutex_put(&mutex);  // leave critical section 
    
   status = tx_semaphore_put(&sem_flag2); 
   print("** Consumer 1 releasing semaphore\r\n"); 
   tx_thread_sleep(3); 
  } 
} 
 
void thread_consumer2_entry(ULONG thread_input) 
{ 
  UINT    status; 
  char tempstr[5]; 
  int i=0; 
   
  while(1)         // loop forever 
  {                       
         status =  tx_semaphore_get(&sem_flag1, TX_WAIT_FOREVER); 
 
         /* Get the mutex with suspension.  */ 
         status =  tx_mutex_get(&mutex, TX_WAIT_FOREVER);    // enter 
critical section 
   convert_to_ascill(buffer,tempstr); 
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   print(tempstr); 
 
   if (buffer == num+1) 
   { 
     print("  In Consumer 2...\r\n"); 
     num = buffer; 
   } 
 
   /* Release the mutex.  */ 
         status =  tx_mutex_put(&mutex);  // leave critical section 
   status = tx_semaphore_put(&sem_flag2); 
   print("** Consumer 2 releasing semaphore\r\n"); 
    
   tx_thread_sleep(4); 
  } 
} 
 
void    convert_to_ascill(ULONG value, CHAR *buffer_ptr) 
{ 
    ULONG   temp; 
    UINT    i = 1; 
 
    /* Fill with spaces.  */ 
    for (i = 0; i < 16; i++) 
        buffer_ptr[i] = ' '; 
    buffer_ptr[16] = 0; /* NULL */ 
 
    /* Calculate the number of places.  */ 
    i = 1; 
    temp = value; 
    while (temp) 
    { 
 
        temp = temp/10; 
        if (temp) 
            i++; 
    } 
 
    /* Load string with number.  */ 
    i--; 
    temp = value; 
    do  
    { 
        buffer_ptr[i] =  (CHAR) ((temp % 10) + 0x30); 
        temp = temp / 10; 
        if (i) 
            i--; 
    } while (temp); 
} 
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