
 1

Demonstration of Multitasking using ThreadX
RTOS on Microblaze and PowerPC

Awais M. Kamboh, Adithya H. Krishnamurthy and Jaya Krishna K. Vallabhaneni

Abstract— The objective of this project is to implement and

demonstrate multiprocessing in a real-time environment using
ThreadX RTOS on PowerPC and MicroBlaze processor cores.
We compared the performance of ThreadX on both the
processors using custom applications. One of the major
challenges involved in the project was to make ThreadX work on
both the above mentioned processors seamlessly. For the
implementation of a multi-tasking model, a producer consumer
application that utilizes a mutex, two semaphores and a timer
was programmed. A multi-threaded Matrix multiplication
program was used to determine the execution as well as context
switching times on both the cores. The results were then
compared and the performance of the hardware configurations
was analyzed. Though both Microblaze and PowerPC performed
well, the PowerPC core on a Virtex-II Pro Platform was better
with faster execution and context switching times.

Index Terms—Multitasking, ThreadX, Microblaze, PowerPC

I. MOTIVATION AND INTRODUCTION

A SSEMBLY level programs were used in the past for
Embedded applications. With the advances in memory,
processor speed, and development tools, high level

languages like C are now used to develop embedded
applications. Real-Time OS takes care of Task scheduling,
Memory management, File handling etc. ThreadX is one such
RTOS developed by Express Logic Inc. ThreadX Can be
customized to run on various processors. Our project
demonstrates a multiprocessing application on Microblaze
soft-core and PowerPC. The performance of ThreadX on both
these cores was measured and a comparative study is
presented here.

RTOS’ seldom run the same way on different underlying
processor architectures. Most RTOS’ are built to take
advantage of specific processor architectures. For example
ThreadX saves only registers a1-a4 during a Context switch in
ARM processor. This warrants a thorough performance
analysis of commonly-used RTOS’ on different platforms. A
study of development time for different platforms can be
indicative of time- to-market windows for commercial
products.

II. BACKGROUND

A. Multitasking
Multitasking is a technique to allocate processing time among
various duties or jobs, which the overall software program
must perform. This usually means that the software is divided
into tasks, or smaller subsets of the total problem and at run-
time, creating an environment that provides each task with its
own virtual processor. A virtual processor typically includes a
register set, a program counter, a stack memory area, and a
stack pointer. A multitasking run-time environment controls
overall task execution. When a higher-priority task needs to
execute, the currently running task's registers are saved in
memory and the higher-priority tasks registers are recovered
from memory. The process of swapping the execution of tasks
is commonly called context switching and context-switching
time is a commonly quoted specification for operating systems
targeting the real-time or embedded systems market.

State machines and time slicing are two popular multitasking
methods. State machines have been used to design complex
systems with high reliability requirements. State machines
require that the task is split into states. The state machine stays
in one state at a time, and switches to another state when the
specified conditions are met. Actions are performed during the
transitions. States represent a situation that is stable for some
time interval. Time slicing means that the kernel interrupts
each process after some milliseconds and gives control to
another task. Thus, each task is given CPU processing at
regular intervals.

B. Microblaze
The MicroBlaze core is a 32-bit Harvard RISC architecture
with a rich instruction set optimized for embedded
applications. The processor is a soft core, which is
implemented using general logic primitives rather than a hard,
dedicated block in the FPGA. The MicroBlaze soft processor
is supported in the Xilinx Spartan and Virtex series of FPGAs.

The MicroBlaze solution is designed to be flexible, giving the
user control of a number of features such as the cache sizes,
interfaces, and execution units. The configurability allows the
user to trade-off features for size, in order to achieve the
necessary performance for the target application at the lowest
possible cost point.

Soft Processor: Intellectual Property (IP) core implemented
using the logic primitives of an FPGA. Key benefits:
Configurability or trade off between price and performance,

 2

faster time to market, easy integration with the FPGA fabric,
no processor obsolescence. The Microblaze performance
depends on the configuration of the processor and the target
FPGA architecture and speed grade. The number of
Microblaze processors on a single FPGA is only limited by
the size of the FPGA. Microblaze configurable interfaces and
peripherals include timers, UARTs, interrupt controllers,
GPIOs, external flash and memory controllers.

C. PowerPC
The PowerPC (Performance Optimization With Enhanced
RISC) Architecture, is a 64-bit specification with a 32-bit
subset. Almost all PowerPCs with a few exceptions are 32-bit.

PowerPC processors have a wide range of implementations,
from high-end server CPUs to the embedded CPU market.
PowerPC processors have a strong embedded presence
because of good performance, low power consumption, and
low heat dissipation. PowerPC 405 is a 32-bit RISC hard IP
core. Virtex II Pro platform FPGAs provide upto two
PowerPC 405 cores on a single device. IBM PowerPC 405 has
wide acceptance in performance oriented applications as well
as comprehensive 3rd party tools support. It offers excellent
performance vs power characteristics in a small die area.
PowerPC core supports a system frequency of atleast
300MHz, corresponding to more than 420 Dhrystone MIPS.
The processor frequency can be dynamically changed for
reduced system power dissipation.

D. ThreadX
ThreadX is Express Logic's advanced Real-Time Operating
System (RTOS) designed specifically for deeply embedded
applications. ThreadX has many advanced features, including
its picokernel architecture, preemption-threshold, and a rich
set of system services. ThreadX is implemented as a C library.
Only the features used by the application are brought into the
final image. The minimal footprint of ThreadX is as small as
2.5KB on CISC processors.

Why ThreadX? It supports a wide spectrum of processors.
The complete ANSI C code is available and there are no
royalties! ThreadX has a very small footprint (as low as 4KB),
Unlimited Threads, Queues, Event Flags, Timers,
Semaphores, Mutexes, Block Pools, and Byte Pools.
Execution is fast with almost 1.7µs context switch @ 40MHZ.

III. OUR IMPLEMENTATION
A good working knowledge of the following resources/tools is
required. The following tools would be used:

• Xilinx Platform Studio v8.1i
• XUP Virtex-II Pro Board (PowerPC core)
• Digilent Inc., Spartan-3 Rev E Board (Microblaze)
• ThreadX RTOS from Express Logic
• Windows Hyperterminal

A. Xilinx Platform Studio v8.1i
The 8.1i version of the Xilinx® Platform Studio tool suite is
used for embedded processing design. This latest release
incorporates a new graphical user interface that improves
platform-based design by making common, tasks easy.
Platform Studio 8.1i supports PowerPC and MicroBlaze
processor designs for the Xilinx Virtex™-4, Virtex-II Pro,
Spartan™-3 and Spartan-3E Platform FPGAs.

The Platform Studio suite is conveniently bundled with a
processing IP library, software drivers, documentation,
reference designs and the MicroBlaze soft processor IP core in
the new 8.1i release of the Xilinx Embedded Development Kit
(EDK). The Embedded Development Kit (EDK) bundle is an
integrated software solution for designing embedded
processing systems. This pre-configured kit includes the
Platform Studio tool suite as well as all the documentation and
IP that is required for designing Xilinx Platform FPGAs with
embedded PowerPC™ hard processor cores and/or
MicroBlaze™ soft processor cores. The Embedded
Development Kit includes the following tools and IP:

Xilinx Platform Studio (XPS)
• Graphical and command line tools for developing and
debugging the hardware and software platforms for an
embedded application.
• Hardware platform that includes graphical and textual
definition tools and generation of simulation and
implementation netlists for use with the ISE logic design
tools.
• Software platform definition that includes graphical and
textual tools for matching it to the hardware platform, editing
source code, running the compiler tool chains and library
generation.

Software Development Tools
• GNU C/C++ compiler for MicroBlaze™ and PowerPC™
• GNU Debugger for MicroBlaze and PowerPC
• Other GNU utilities
• XMD – Xilinx Microprocessor Debug engine for
MicroBlaze and PowerPC. It provides host-based target
control using command line tools that enable complex
regression testing.
• Data2MEM – a stand alone application for loading and
updating on-chip memory content directly within the FPGA
bitstream.
• Base System Builder – Wizard to streamline configuring
hardware elements, processor options, bus system, IP options,
and automatically generate memory map and design files
• Platform Studio SDK (Software Development Kit) – SW
focused development and debug environment.

Board Support Packages (BSPs)
• Stand Alone BSP – For non-RTOS systems (MicroBlaze and
PowerPC)
• Wind River VxWorks – For PowerPC Platform FPGAs
• MontaVista Linux – For PowerPC Platform FPGAs
• Support for Xilinx MicroKernel (XMK) Systems

Processor IP
• PowerPC and MicroBlaze infrastructure and peripheral IP
cores and Microblaze soft processor core.

 3

Base System Builder
The Base System Builder (BSB) automates several basic
hardware and software platform configuration tasks common
to most processor designs. If the target is one of the supported
embedded processor development boards available from
Xilinx, BSB picks the peripherals available on that board, and
automatically matches the FPGA pinout to the board, and
create a completed platform and test application that is ready
to download and run on the board. There is also the option of
designing a custom board, by using BSB to select and
interconnect one of the available processor cores
(MicroBlaze™ or PowerPC™, depending on the selected
target FPGA device) with a variety of compatible, commonly
used peripheral cores from the library. This gives us a
hardware platform to use as a starting point from which we
can add more processors and peripherals if needed, including
custom peripherals, using the tools provided in XPS.

In all cases, BSB customizes following attributes of the
system:
• Processor type (MicroBlaze or PowerPC, depending on

the selected target FPGA device)
• Processor and bus clock frequency (BSB automatically

infers and configures a Digital Clock Manager (DCM)
primitive when needed)

• Standard processor buses (all peripherals are
automatically connected via appropriate buses)

• Debug interface
• Cache configuration
• Memory size and type (both on-chip BRAM and

controllers for off-chip memory devices)
• Common peripherals (such as general purpose I/O,

UART, and timer)
• Interrupt sources (from among the applicable selected

peripherals)
When targeting one of the supported embedded processor
development boards, BSB narrows the choices of peripherals
that control off-chip devices to those features provided on the
specific board. Any deselected peripherals are omitted from
the processor system design to minimize FPGA utilization.

Upon exit of BSB, a Hardware Specification (MHS) file is
created and loaded into the XPS project. We can then further
enhance the design in XPS or continue to implement the
design using the Xilinx implementation tools.

Optionally, BSB can also create one or more software
projects. Each project contains a sample application and linker
script that can be compiled and run on the hardware on the
target development board. XPS supports multiple software
projects for every hardware system, each of which contains its
own set of source files and linker script.

B. Digilent Inc. Spartan III (Microblaze)
Spartan-3 development board is a low-cost solution for
evaluating the Xilinx Spartan-3 XC3S200 FPGA. The
Spartan-3 Starter Board provides a powerful, self-contained
development platform for designs targeting the new Spartan-3
FPGA from Xilinx. It features a 200K gate Spartan-3, on-
board I/O devices, and 1MB fast asyncronous SRAM, making

it the perfect platform to experiment with any new design,
from a simple logic circuit to an embedded processor core.
The board also contains a Platform Flash JTAG-
programmable ROM, so designs can easily be made non-
volatile. The Spartan-3 Starter Board is fully compatible with
all versions of the Xilinx ISE tools. The major features of the
board are:
• Xilinx Spartan-3 FPGA w/ twelve 18-bit multipliers,

216Kbits of block RAM, and up to 500MHz internal
clock speeds

• On-board 2Mbit Platform Flash (XCF02S)
• 8 slide switches, 4 pushbuttons, 9 LEDs, and 4-digit

seven-segment display
• Serial port, VGA port, and PS/2 mouse/keyboard port
• Three high-current voltage regulators (3.3V, 2.5V, and

1.2V)
• Works with JTAG3 programming cable, and P4 &

MultiPRO cables from Xilinx
• 1Mbyte on-board 10ns SRAM (256Kb x 32)

Fig. 1: Xilinx Spartan-3 platform architecture diagram

C. Digilent Inc.XUP Virtex II PRO Board (PowerPC)

The XUP Virtex-II Pro Development System provides an
advanced hardware platform that consists of a high
performance Virtex-II Pro Platform FPGA surrounded by a
comprehensive collection of peripheral components that can
be used to create a complex system to demonstrate the
capability of the Virtex-II Pro Platform FPGA. Some features
of the board:

• Virtex-2 Pro XC2VP30 FPGA with 30,816 Logic Cells,

136 18-bit multipliers, 2,448Kb of block RAM, and two
PowerPC Processors

• DDR SDRAM DIMM that can accept up to 2Gbytes of
RAM

• 10/100 Ethernet port
• USB2 port
• Compact Flash card slot
• XSGA Video port
• Audio Codec
• SATA, and PS/2, RS-232 ports

 4

•
adX.

•
xamples of

• th the ThreadX
run-time library tx.lib. The resulting image can be

ces, Event Flag, Interrupt, Message
ueue, Semaphore and Mutex services, Thread Control and

ext switch on the
RM processor in only about 100 cycles, which is one

Hz processor.

Fig. 2: Virtex II Pro board architecture diagram

D. ExpressLogic ThreadX RTOS
ThreadX is a high performance real time kernel designed
specifically for embedded applications. It is highly scalable
from small microcontroller applications to powerful RISC and
DSP processors. ThreadX services are implemented as a C
library, only those services actually used by the application
are brought into the run-time image. Hence, the actual size of
ThreadX is completely determined by the application. For
most applications, the instruction image of ThreadX ranges
between 2 KBytes and 15 KBytes in size.

Instead of layering kernel functions on top of each other like
traditional microkernel architectures, ThreadX services plug
directly into its core. This results in the fastest possible
context switching and service call performance. This non-
layering design is called picokernel architecture.

ThreadX is written primarily in ANSI C. A small amount of
assembly language is needed to tailor the kernel to the
underlying target processor. This design makes it possible to
port ThreadX to a new processor family in a very short time.

Most distributions of ThreadX include the complete C source
code as well as the processor-specific assembly language. This
eliminates the “black-box” problems that occur with many
commercial kernels. The source code also allows for
application specific modifications. Although not
recommended, it is certainly beneficial to have the ability to
modify the kernel if it is absolutely required.

Because of its versatility, high-performance picokernel
architecture, and great portability, ThreadX has the potential
to become an industry standard for embedded applications.

Using ThreadX is easy. Basically, the application code must
include tx_api.h during compilation and link with the
ThreadX run-time library tx.lib. There are four steps required
to build a ThreadX application:

• Include the tx_api.h file in all application files that use
ThreadX services or data structures.

Create the standard C main function. This function must
eventually call tx_kernel_enter to start Thre
Application-specific initialization that does not involve
ThreadX may be added prior to entering the kernel.
Create the tx_application_define function. This is where
the initial system resources are created. E
system resources include threads, queues, memory pools,
event flag groups, mutexes, and semaphores.
Compile application source and link wi

downloaded to the target and executed.

Fig. 3: Flow diagram for ThreadX initialization

ThreadX provides several API services such as Byte and
Block Memory servi
Q
Timer Services.

Context Switch: When one thread is executing and an
interrupt occurs, triggering the execution of a higher priority
thread, the previously executing thread is interrupted, its
context saved, and the processor is directed to start or resume
execution of the instructions of the new thread. This context
switch must be performed quickly, because real-time systems
can require many context switches in a short period of time.
On the front end of interrupt service routines, only the
compiler’s scratch registers are saved initially. If it turns out
that thread preemption is required, then the remaining
registers in the set are also saved. ThreadX optimizes context
switching on the ARM processor. Only those registers
preserved across function calls are saved (registers v1-v4, fp,
and lr). As a result, ThreadX performs cont
A
microsecond on a 100M

Application Timers:

 5

Application timers are maintained by ThreadX to provide
“count-down” services to provide a variety of time-related
duties. Timers can be set up to operate once (an one-shot
timer), or for recurring operation (a periodic timer). When a
timer expires, it generates an interrupt and a timer function
(similar to an Interrupt Service Routine or “ISR”) is executed.
The timer function can affect the processing or even the
sc s, depending on which threads
h this timer expires.

The RS232 Serial port was used for communication between

Fig. 4: Bl ject plan

ere we outline the procedure for creating and running the

ort of our custom test application(s) and is not

puter and

r Board.

ost
com

 settings:
rt corresponding to connected serial

ost computer
00

oose the Base

B Configure I/O Interfaces: Uncheck LEDs, 7

eripherals: Add an OPB Timer

mer mode with interrupts.
osen with default values.

Preparing the Software Application:

pendix A.

 the appendix,

4. on.

ons to be appended.
6. Type -M <location/foldername>/tx.a in the Linker

The j
Base Sys

1. ure I/Os: Uncheck DDRSDRAM,

2.
 Memory size. Also add OPB

 Timer and choose one
timer with interrupts.

lication in the same way as above.
Source Code for the Producer-Consumer Application is
provided in Appen

wo multitasking applications were designed using ThreadX
RTOS for execution on Microblaze and PowerPC cores.

1. Producer-Consumer Application

heduling of application thread
ave been set up to execute when

E. Windows Hyperterminal

the Development boards and the host PC.

ock diagram of Pro

IV. PROCEDURE

H
ThreadX multitasking application on the development boards.

The major steps involved for Spartan-3 board are: (this list is
in supp
exhaustive. For a complete guide please refer to the Xilinx
guides)
1. Connect the Parallel Cable between your host computer and
the Spartan-3 Starter Board.
2. Connect the serial cable between your host com
the Spartan-3 Starter Board.
3. Apply power to the Spartan-3 Starte

4. Start a hyperterminal (or similar) session on your h
puter with the following settings:

• Start a hyperterminal (or similar) session on your host
computer with the following

• Select the COM po
port on your h

• Baud Rate = 96
• Data = 8 bits
• Parity = none
• Stop = 1 bit
• Flow control = none
5. Invoke Xilinx Platform Studio (XPS) and ch
System Builder (BSB) Wizard.
Creating the Hardware Platform with the BSB:
6. In BSB the following configuration is chosen for the Xilinx
Spartan-3 board processor apart from the default settings:
Under Local Memory, for Data and Instruction, select 16 KB.
7. In BS
segment LEDs and Check RS232 and SRAM with default
settings.
8. In BSB Add Internal P
Peripheral and choose a Count Bit Width of 32 and a single
ti
9. All the other options in BSB are ch

1. Source code for the Matrix Multiplication program is
provided in Ap

2. Make sure the tx.a, tx_api.h, and tx_port.h files are in
project folder.

3. After adding the test project given in
set the compiler options as follows:
Select the default linker script opti

5. Give the “> mapfile.map -save-temps” option for
compiler opti

–WI option.

 ma or steps for XUP Virtex-II Pro board:
tem Builder Settings:
In BSB Config
EEPROM, LEDs and all remaining peripherals
except RS 232.
In BSB Add Internal Peripherals: For PLB BRAM IF
CNTLR, select 64KB
BRAM IF CNTRL and OPB

All other options are default.

Prepare the Software App

dix B.

V. TEST APPLICATIONS
T

 6

One Producer and Two Consumers were modeled
with 3 threads. Two ThreadX Semaphores and one
Mutex were used.

2. Matrix Multiplication
Two Threads were created and each of them was
performing 100 runs of 6x6 matrix multiplication.

Both the programs were run successfully on each of the cores
and development boards. The execution time for the matrix
multiplication and the context switching time for the threads
was noted.

VI. EXPERIMENTAL RESULTS

Performance Analysis Methods

Types of Performance analysis methods

• Intrusive
• Non-intrusive

Non-intrusive is ‘ideal’ but requires use of special H/w like
logic analyzers.

Intrusive is easy to implement with a small tradeoff. Usually a
small piece of code is placed in the application which
measures the performance metrics such as execution speed,
time etc. But this code itself will have some overhead
associated with it.

TABLE 1: A COMPARISON OF MICROBLAZE AND POWERPC CORES

We employed an intrusive method of Performance analysis to
determine the performance of the ThreadX RTOS on the
cores. The context switch times were obtained by finding the
difference in timer counts (ticks) at the end of a thread and the
beginning of the next thread.

For Matrix Multiplication program:

 Context Switch time
 PowerPC: 9 µs @ 100 MHz
 Microblaze: 16 µs @ 50 MHz

 Execution time for 100 runs
 PowerPC: 7.2 ms @ 100 MHz
 Microblaze: 16.07 ms @ 50 MHz

The context switch times obtained above appear higher than
the expected values or the times given in the data sheets. This
might be because of the intrusive method used. The
tx_time_get() function of ThreadX which returns the timer
ticks elapsed, itself has some amount of overhead associated.

VII. CONCLUSIONS

• ThreadX allows the designer to handle multiple threads

and inter-thread communication at a higher level.
• ThreadX resources used in our project are timers, threads,

mutex and semaphores.
• Microblaze soft processor gives us the independence to

choose the configuration and peripheral we like.
• PowerPC gives better performance when compared with

Microblaze in terms of lower switching times and faster
execution.

• Xilinx’s XPS 8.1i is an easy to use tool to integrate
hardware description with software applications.

VIII. FUTURE WORK

Multiple Microblaze softcores can be implemented on a single
FPGA and Microblaze Debug Module allows debugging of 8
microblaze processors at a time. The XUP Virtex-II Pro
Platform has two PowerPC cores embedded in the FPGA. The
combination of multiple processor cores integrated with co-
processing capability enables a wide range of performance
optimizing options for parallel processing applications.
Investigation of the performance of the RTOS with multiple
processors could be carried out. Comparison of ThreadX with
other commercially available RTOS’ such as: VXWorks,
Nucleus, uC/OS-II, uCLinux. Comparison of IDEs (Compilers
and Debuggers) such as Nucleus Debugger (for both MB and
PPC), E9524A Inverse Assembler (for MB) etc.

PowerPC
Clock Frequency Dhrystone MIPS DMIPS/MHZ

100 MHz 135 1.35
200 MHz 271 1.35
300 MHz 407 1.35
400 MHz 542 1.35

Microblaze
Clock Frequency Dhrystone MIPS DMIPS/MHZ

100 MHz 92 0.92
150 MHz 138 0.92
180 MHz 166 0.92

REFERENCES

[1] Jie Liu, Edward A Lee, 2003, Multitasking for Real time Embedded

systems. IEEE Control Systems Magazine
[2] Sung I. Park, Vijay Ranganathan, Mani B. Srivastava Energy Efficiency

and Fairness Tradeoffs in Multi-Resource, Multi-Tasking Embedded
Systems, ISLPED’03, Korea

[3] Lamie, W., ThreadX® Performance Analysis, Express Logic, Inc.,
Whitepaper.

[4] Szewinski J., Kaleta, P., Fafara, P., Pucyk, P., Koprek, W., Pozniak, K.,
Romaniuk, R., Software for development and communication with
FPGA based hardware. Institute of Electronic Systems, Warsaw
University of Technology, Poland.

[5] Dr. Ed Lamie, Express Logic Real-Time Embedded Multithreading:
Using ARM Cores and the ThreadX RTOS

[6] Xilinx University Program, EDK Base System Builder (BSB) Support
for XUPV2P Board.

[7] ThreadX User Guide by Express Logic
[8] ThreadX Data Sheets for Microblaze and PowerPC 405
[9] ThreadX Demos for Spartan-3 and Virtex-II Pro by Express Logic.
[10] M. Young, The Techincal Writers Handbook. Mill Valley, CA:

University Science, 1989.
[11] Spartan-3 MB and Virtex-II Pro Demos by Xilinx Inc.
[12] www.xilinx.com
[13] www.digilentinc.com/xupv2p

http://www.xilinx.com/
http://www.digilentinc.com/xupv2p

 7

[14] www.rtos.com

http://www.rtos.com/

 8

IX. APPENDIX A
Source Code for Matrix Multiplication program using
ThreadX on Microblaze:

// Located in: microblaze_0/include/xparameters.h
#include "xparameters.h"
#include "stdio.h"
#include "xutil.h"

#include "xgpio_l.h" /* general-purpose I/O peripheral control functions */
#include "xtmrctr_l.h" /* timer/counter peripheral control functions */
#include "xuartlite_l.h" /* uartlite peripheral control functions */
#include "xintc_l.h" /* interrupt controller peripheral control functions */

/* End of MicroBlaze Specific Includes. */

#include "tx_api.h"

#define TX_DISABLE_ERROR_CHECKING
#define DEMO_STACK_SIZE 1024
#define MATRIX_SIZE 6
#define NO_RUNS 100

TX_THREAD thread_main;
TX_THREAD thread_main1;

void thread_main_entry(ULONG thread_input);
void thread_main1_entry(ULONG thread_input);
void convert_to_ascill(ULONG value, CHAR *buffer_ptr);

/* Global variables */
unsigned int timer_count = 500;//16777216; /* initial timer period in OPB
cycles ~= 0.3 sec */
ULONG time1, time2;
char buffer[10];

/* Timer interrupt service routine */
/* Note: This ISR was registered statically in the Software Platform Settings
dialog */
void timer_int_handler(void * baseaddr_p) {
 unsigned int csr;
 /* Read timer 0 CSR to see if it requested the interrupt */
 csr =
XTmrCtr_mGetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0);
 if (csr & XTC_CSR_INT_OCCURED_MASK) {

 _tx_timer_interrupt();
 }
 /* Clear the timer interrupt */
 XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0,
csr);
}

/* Interrupt test routine */
void InterruptTest(void)
{
 /* Start the interrupt controller */
 XIntc_mMasterEnable(XPAR_OPB_INTC_0_BASEADDR);

 /* Set the number of cycles the timer counts before interrupting */
 XTmrCtr_mSetLoadReg(XPAR_OPB_TIMER_1_BASEADDR, 0,
timer_count);

 /* Reset the timers, and clear interrupts */
 XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0,
 XTC_CSR_INT_OCCURED_MASK | XTC_CSR_LOAD_MASK);

 /* Enable timer and UART interrupt requests in the interrupt controller */
 XIntc_mEnableIntr(XPAR_OPB_INTC_0_BASEADDR,

 XPAR_OPB_TIMER_1_INTERRUPT_MASK /*|
XPAR_RS232_INTERRUPT_MASK*/);

 /* Start the timers */
 XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0,
 XTC_CSR_ENABLE_TMR_MASK | XTC_CSR_ENABLE_INT_MASK
|
 XTC_CSR_AUTO_RELOAD_MASK |
XTC_CSR_DOWN_COUNT_MASK);
}

/* End user-supplied interrupt test routine */

int main (void)
{
 //print("-- Entering main() --\r\n");

 /* Enter the ThreadX kernel. */

 tx_kernel_enter();

 //print("-- Exiting main() --\r\n");
 return 0;
}

void tx_application_define(void *first_unused_memory)
{
 CHAR *pointer;

 /* Put system definition stuff in here, e.g. thread creates and other assorted
 create information. */

 /* Setup pointer. */
 pointer = (CHAR *) first_unused_memory;

 /* Create the main thread. */
 tx_thread_create(&thread_main, "thread main", thread_main_entry, 0,
 pointer, DEMO_STACK_SIZE,
 2, 2, 0, TX_AUTO_START);
 pointer = pointer + DEMO_STACK_SIZE;

 tx_thread_create(&thread_main1, "thread main1", thread_main1_entry, 0,
 pointer, DEMO_STACK_SIZE,
 2, 2, 0, TX_AUTO_START);
 pointer = pointer + DEMO_STACK_SIZE;

 /* Initialize MicroBlaze Timer. */
 InterruptTest();
}

/* Define the test threads. */
void thread_main_entry(ULONG thread_input)
{
 int a[MATRIX_SIZE][MATRIX_SIZE],
b[MATRIX_SIZE][MATRIX_SIZE], c[MATRIX_SIZE][MATRIX_SIZE];
 int i, j, k, m;
 ULONG sttime, endtime;

 sttime = tx_time_get();

 for (i=0; i < MATRIX_SIZE; i++)
 {
 for (j=0; j < MATRIX_SIZE; j++)
 {
 a[i][j] = i;
 b[i][j] = i+j;
 c[i][j] = 0;
 }
 }

 for (m=0; m < NO_RUNS; m++)
 {
 for (i=0; i < MATRIX_SIZE; i++)

 9

 {
 for (j=0; j < MATRIX_SIZE; j++)
 {
 for (k=0; k < MATRIX_SIZE; k++)
 {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
 }
 }

 //tx_thread_sleep(3);
 endtime = tx_time_get();
 endtime = endtime - sttime;
 convert_to_ascill(endtime,buffer);
 //print("Total ticks to run matmul : ");
 print(buffer);
 //time1 = tx_time_get();
}

void thread_main1_entry(ULONG thread_input)
{
 //time2 = tx_time_get();
 //time2 = time2-time1;
 //convert_to_ascill((time2-time1),buffer);
 //print(buffer);

 int a[MATRIX_SIZE][MATRIX_SIZE],
b[MATRIX_SIZE][MATRIX_SIZE], c[MATRIX_SIZE][MATRIX_SIZE];
 int i, j, k, m;
 char buffer[10];
 ULONG sttime, endtime;

 sttime = tx_time_get();

 for (i=0; i < MATRIX_SIZE; i++)
 {
 for (j=0; j < MATRIX_SIZE; j++)
 {
 a[i][j] = i;
 b[i][j] = i+j;
 c[i][j] = 0;
 }
 }

 for (m=0; m < NO_RUNS; m++)
 {
 for (i=0; i < MATRIX_SIZE; i++)
 {
 for (j=0; j < MATRIX_SIZE; j++)
 {
 for (k=0; k < MATRIX_SIZE; k++)
 {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
 }
 }

 //tx_thread_sleep(3);
 endtime = tx_time_get();
 endtime = endtime - sttime;
 convert_to_ascill(endtime,buffer);
 //print("Total ticks to run matmul : ");
 print(buffer);

}

void convert_to_ascill(ULONG value, CHAR *buffer_ptr)
{
 ULONG temp;
 UINT i = 1;

 /* Fill with spaces. */
 for (i = 0; i < 16; i++)
 buffer_ptr[i] = ' ';
 buffer_ptr[16] = 0; /* NULL */

 /* Calculate the number of places. */
 i = 1;
 temp = value;
 while (temp)
 {

 temp = temp/10;
 if (temp)
 i++;
 }

 /* Load string with number. */
 i--;
 temp = value;
 do
 {
 buffer_ptr[i] = (CHAR) ((temp % 10) + 0x30);
 temp = temp / 10;
 if (i)
 i--;
 } while (temp);
}

 10

X. APPENDIX B
Source Code for the Producer Consumer ThreadX Application
on PowerPC:

Producer-Consumer

// Located in: ppc405_0/include/xparameters.h
#include "xparameters.h"
#include "stdio.h"
#include "xutil.h"

/* PPC Specific Includes. */

#include "xgpio_l.h"
#include "xparameters.h"
#include "tx_api.h"

#define TX_DISABLE_ERROR_CHECKING
#define DEMO_STACK_SIZE 1024

/* Define the ThreadX object control blocks... */

TX_THREAD thread_producer;
TX_THREAD thread_consumer1;
TX_THREAD thread_consumer2;
TX_SEMAPHORE sem_flag1;
TX_SEMAPHORE sem_flag2;
TX_MUTEX mutex;

void thread_producer_entry(ULONG thread_input);
void thread_consumer1_entry(ULONG thread_input);
void thread_consumer2_entry(ULONG thread_input);
void convert_to_ascill(ULONG value, CHAR *buffer_ptr);

int buffer, num;

/* Begin user-supplied interrupt test routine for PPC_ML310_Tutorial_8_1 */

/* This example demonstrates how to use an interrupt controller
 * that responds to interrupts from two peripherals (UART and OPB_timer)
 * in a PowerPC based system.
 * This interrupt test routine has been added to the test application
(TestApp_Memory)
 * generated by the Base System Builder.
 */

#include "xgpio_l.h" /* general-purpose I/O peripheral control functions */
#include "xtmrctr_l.h" /* timer/counter peripheral control functions */
#include "xuartlite_l.h" /* uartlite peripheral control functions */
#include "xintc_l.h" /* interrupt controller peripheral control functions */
#include "xexception_l.h" /* PPC exception handler control functions */

/* Global variables */
unsigned int timer_count = 33554432; /* initial timer period in OPB cycles ~=
0.3 sec */
volatile unsigned int exit_command = 0; /* flag from UART ISR to exit
InterruptTest routine */

/* Timer interrupt service routine */
/* Note: This ISR was registered statically in the Software Platform Settings
dialog */
void timer_int_handler(void * baseaddr_p) {
 unsigned int csr;
 /* Read timer 0 CSR to see if it requested the interrupt */
 csr =
XTmrCtr_mGetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0);
 if (csr & XTC_CSR_INT_OCCURED_MASK) {

XTmrCtr_mEnableIntr(XPAR_OPB_TIMER_1_BASEADDR, 0);
 _tx_timer_interrupt();

 /* Clear the timer interrupt */

 }
 }

/* Interrupt test routine */
void InterruptTest(void) {
 print("-- Entering InterruptTest() --\r\n");

 XIntc_mMasterEnable(XPAR_OPB_INTC_0_BASEADDR);
 /* Set the number of cycles the timer counts before interrupting */
 XTmrCtr_mSetLoadReg(XPAR_OPB_TIMER_1_BASEADDR, 0,
timer_count);
 /* Reset the timers, and clear interrupts */
 XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0,
 XTC_CSR_INT_OCCURED_MASK | XTC_CSR_LOAD_MASK);
 /* Enable timer and uart interrupt requests in the interrupt controller */
 XIntc_mEnableIntr(XPAR_OPB_INTC_0_BASEADDR,
 XPAR_OPB_TIMER_1_INTERRUPT_MASK /*|
XPAR_RS232_UART_1_INTERRUPT_MASK*/);
 /* Start the timers */
 XTmrCtr_mSetControlStatusReg(XPAR_OPB_TIMER_1_BASEADDR, 0,
 XTC_CSR_ENABLE_TMR_MASK | XTC_CSR_ENABLE_INT_MASK
|
 XTC_CSR_AUTO_RELOAD_MASK |
XTC_CSR_EXT_GENERATE_MASK/*XTC_CSR_DOWN_COUNT_MAS
K*/);
 /* Enable PPC non-critical interrupts */
 XExc_mEnableExceptions(XEXC_NON_CRITICAL);

 /* Disable PPC non-critical interrupts */
 XExc_mDisableExceptions(XEXC_NON_CRITICAL);
 print("-- Exiting InterruptTest() --\r\n");
}

/* End user-supplied interrupt test routine */

//==

int main (void) {

 print("-- Entering main() --\r\n");
 /*
 * MemoryTest routine will not be run for the memory at
 * 0xffff0000 (plb_bram_if_cntlr_1)
 * because it is being used to hold a part of this application program
 */

 /* Testing BRAM Memory (opb_bram_if_cntlr_1)*/
 {
 XStatus status;

 print("Starting MemoryTest for opb_bram_if_cntlr_1:\r\n");
 print(" Running 32-bit test...");
 status =
XUtil_MemoryTest32((Xuint32*)XPAR_OPB_BRAM_IF_CNTLR_1_BASE
ADDR, 512, 0xAAAA5555, XUT_ALLMEMTESTS);
 if (status == XST_SUCCESS) {
 print("PASSED!\r\n");
 }
 else {
 print("FAILED!\r\n");
 }
 print(" Running 16-bit test...");
 status =
XUtil_MemoryTest16((Xuint16*)XPAR_OPB_BRAM_IF_CNTLR_1_BASE
ADDR, 1024, 0xAA55, XUT_ALLMEMTESTS);
 if (status == XST_SUCCESS) {
 print("PASSED!\r\n");
 }
 else {
 print("FAILED!\r\n");

 11

 }
 print(" Running 8-bit test...");
 status =
XUtil_MemoryTest8((Xuint8*)XPAR_OPB_BRAM_IF_CNTLR_1_BASEA
DDR, 2048, 0xA5, XUT_ALLMEMTESTS);
 if (status == XST_SUCCESS) {
 print("PASSED!\r\n");
 }
 else {
 print("FAILED!\r\n");
 }
 }
 InterruptTest();
 /* Enter the ThreadX kernel. */
 tx_kernel_enter();
 /* Run user-supplied interrupt test routine */

 print("-- Exiting main() --\r\n");
 return 0;
}

void tx_application_define(void *first_unused_memory)
{
 CHAR *pointer;

 /* Put system definition stuff in here, e.g. thread creates and other assorted
 create information. */

 /* Setup pointer. */
 pointer = (CHAR *) first_unused_memory;

 /* Create the main thread. */
 tx_thread_create(&thread_producer, "thread producer",
thread_producer_entry, 0,
 pointer, DEMO_STACK_SIZE,
 2, 2, 1, TX_AUTO_START);
 pointer = pointer + DEMO_STACK_SIZE;

 tx_thread_create(&thread_consumer1, "thread consumer1",
thread_consumer1_entry, 1,
 pointer, DEMO_STACK_SIZE,
 2, 2, 5, TX_AUTO_START);
 pointer = pointer + DEMO_STACK_SIZE;

 tx_thread_create(&thread_consumer2, "thread consumer2",
thread_consumer2_entry, 2,
 pointer, DEMO_STACK_SIZE,
 2, 2, 5, TX_AUTO_START);
 pointer = pointer + DEMO_STACK_SIZE;

 /* Create a semaphore */
 tx_semaphore_create(&sem_flag1, "semaphore flag1", 1);

 /* Create a semaphore */
 tx_semaphore_create(&sem_flag2, "semaphore flag2", 1);

 /* Create the mutex used to access the critical region. */
 tx_mutex_create(&mutex, "mutex 0", TX_NO_INHERIT);

 /* Initialize MicroBlaze Timer. */
 InterruptTest();
}

/* Define the test threads. */
void thread_producer_entry(ULONG thread_input)
{
 char tempstr[10];
 int num=0;
 UINT status;
 ULONG ptime;

 while(1) // loop forever

 {
 num++;

 status = tx_semaphore_get(&sem_flag2, TX_WAIT_FOREVER);

 /* Get the mutex with suspension. */
 status = tx_mutex_get(&mutex, TX_WAIT_FOREVER); // enter
critical section
 convert_to_ascill(num, tempstr);
 print(tempstr);
 print(" In Producer thread...\r\n");
 buffer=num; // create a new number to put in the buffer

 /* Release the semaphore flag */
 status = tx_semaphore_put(&sem_flag1);
 print("** Producer releasing semaphore\r\n");

 /* Release the mutex. */
 status = tx_mutex_put(&mutex); // leave critical section
 //ptime = tx_time_get();
 //convert_to_ascill(ptime, tempstr);
 //print(tempstr);

 tx_thread_sleep(10);
 }
}

void thread_consumer1_entry(ULONG thread_input)
{
 UINT status;
 char tempstr[5];
 int i=0;

 while(1) // loop forever
 {
 status = tx_semaphore_get(&sem_flag1, TX_WAIT_FOREVER);

 /* Get the mutex with suspension. */
 status = tx_mutex_get(&mutex, TX_WAIT_FOREVER); // enter
critical section
 convert_to_ascill(buffer,tempstr);

 print(tempstr);

 if (buffer == num+1)
 {
 print(" In Consumer 1...\r\n");
 num = buffer;
 }

 /* Release the mutex. */
 status = tx_mutex_put(&mutex); // leave critical section

 status = tx_semaphore_put(&sem_flag2);
 print("** Consumer 1 releasing semaphore\r\n");
 tx_thread_sleep(3);
 }
}

void thread_consumer2_entry(ULONG thread_input)
{
 UINT status;
 char tempstr[5];
 int i=0;

 while(1) // loop forever
 {
 status = tx_semaphore_get(&sem_flag1, TX_WAIT_FOREVER);

 /* Get the mutex with suspension. */
 status = tx_mutex_get(&mutex, TX_WAIT_FOREVER); // enter
critical section
 convert_to_ascill(buffer,tempstr);

 12

 print(tempstr);

 if (buffer == num+1)
 {
 print(" In Consumer 2...\r\n");
 num = buffer;
 }

 /* Release the mutex. */
 status = tx_mutex_put(&mutex); // leave critical section
 status = tx_semaphore_put(&sem_flag2);
 print("** Consumer 2 releasing semaphore\r\n");

 tx_thread_sleep(4);
 }
}

void convert_to_ascill(ULONG value, CHAR *buffer_ptr)
{
 ULONG temp;
 UINT i = 1;

 /* Fill with spaces. */
 for (i = 0; i < 16; i++)
 buffer_ptr[i] = ' ';
 buffer_ptr[16] = 0; /* NULL */

 /* Calculate the number of places. */
 i = 1;
 temp = value;
 while (temp)
 {

 temp = temp/10;
 if (temp)
 i++;
 }

 /* Load string with number. */
 i--;
 temp = value;
 do
 {
 buffer_ptr[i] = (CHAR) ((temp % 10) + 0x30);
 temp = temp / 10;
 if (i)
 i--;
 } while (temp);
}

	motivation and introduction
	background
	Multitasking
	Microblaze
	PowerPC
	ThreadX

	our implementation
	Xilinx Platform Studio v8.1i
	Digilent Inc. Spartan III (Microblaze)
	Digilent Inc.XUP Virtex II PRO Board (PowerPC)
	ExpressLogic ThreadX RTOS
	Windows Hyperterminal

	procedure
	test applications
	Experimental results
	conclusions
	future work
	appendix a
	appendix b

